Identical particle scattering from a weakly coupled Bose-Einstein condensed gas
نویسندگان
چکیده
We calculate the scattering states and cross sections for a Bose-Einstein condensed dilute gas trapped in a spherical square well of finite depth. The interactions are treated in the scattering length approximation. We solve the Gross-Pitaevskii equation and the Bogoliubov equations for bound and scattering states. The results show that there are transparency effects reminiscent of those conjectured to occur for strongly coupled systems. When incident particle wavelengths l are comparable to the well size a, exchange induced transparency enhancement is dramatic only for particular combinations of well depth, interaction strength, and particle number. For particles with large momenta (a/l@1), however, exchange with the condensate results in enhanced transmission for all coupling strengths. We calculated the rate of decay of the scattering states to leading order in anharmonic corrections to the Bogoliubov approximation and found the corresponding inelastic cross sections to be extremely small.
منابع مشابه
Collapse and Bose - Einstein condensation in a trapped Bose gas with negative scattering length
We find that the key features of the evolution and collapse of a trapped Bose condensate with negative scattering length are predetermined by the particle flux from the non-equilibrium above-condensate cloud to the condensate and by 3-body recombination of Bose-condensed atoms. The collapse, starting once the number of Bose-condensed atoms N 0 reaches the critical value, ceases and turns to exp...
متن کاملBose-Einstein condensation in dilute atomic gases: atomic physics meets condensed matter physics
Bose-Einstein condensed atomic gases are a new class of quantum fluids. They are produced by cooling a dilute atomic gas to nanokelvin temperatures using laser and evaporative cooling techniques. The study of these quantum gases has become an interdisciplinary field of atomic and condensed matter physics. Topics of many-body physics can now be studied with the methods of atomic physics. Many lo...
متن کاملBallistic Motion of a Tracer Particle Coupled to a Bose gas
We study the motion of a heavy tracer particle weakly coupled to a dense interacting Bose gas exhibiting Bose-Einstein condensation. In the so-called mean-field limit, the dynamics of this system approaches one determined by nonlinear Hamiltonian evolution equations. We derive the effective dynamics of the tracer particle, which is described by a non-linear integro-differential equation with me...
متن کاملEmission of Cherenkov Radiation as a Mechanism for Hamiltonian Friction
We study the motion of a heavy tracer particle weakly coupled to a dense, weakly interacting Bose gas exhibiting Bose-Einstein condensation. In the so-called mean-field limit, the dynamics of this system approaches one determined by nonlinear Hamiltonian evolution equations. We prove that if the initial speed of the tracer particle is above the speed of sound in the Bose gas, and for a suitable...
متن کاملCritical temperature of Bose-Einstein condensation for weakly interacting bose gas in a potential trap
The critical temperature of Bose-Einstein condensation at minimum momentum state for weakly interacting Bose gases in a power-law potential and the deviation of the critical temperature from ideal bose gas are studied. The effect of interaction on the critical temperature is ascribed to the ratiao α/λc, where α is the scattering length for s wave and λc is de Broglie wavelength at critical temp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000